
On the complexity of multi-qubit quantum states
Johannes Kepler University Linz / Spring 2025

Univ. Prof. Dr. Richard Kueng, MSc ETH

Copyright ©2025. All rights reserved.

These lecture notes are composed using an adaptation of a template designed by
Mathias Legrand, licensed under CC BY-NC-SA 3.0 (http://creativecommons.
org/licenses/by-nc-sa/3.0/).

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Contents

1 Quantum information processing units (QPUs) . . . . . . . . . . . . . 1
1.1 High-level overview 1
1.2 Single-qubit quantum processors 2
1.2.1 Gaining intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Mathematical formalism (matrix-vector multiplication) . . . . . . . . . . . . . . 4
1.2.3 Discrete gate sets and universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Example: random number generator . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Multi-qubit quantum processors 9
1.4 Implications 11

2 Complexity of generic states/circuits . . . . . . . . . . . . . . . . . . . . . 12
2.1 Motivation 12
2.2 Setting and main result 13
2.3 Proof of the main result 14
2.3.1 Step 1: Expected behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Step 2: Concentration around expected behavior . . . . . . . . . . . . . . . . . . 15
2.3.3 Step 3: union bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 quantum state complexity by design . . . . . . . . . . . . . . . . . . . 18
3.1 Motivation and statement of results 18
3.2 Recapitulation: almost all states have high complexity 20



3.3 Proof part 2: complexity by design 21
3.4 Proof part 3: connection to local random circuits 23
3.5 Generalizations 23



1. Quantum information processing units (QPUs)

Date: April 2, 2025

Agenda:

1 high-level overview
2 single-qubit processors
3 multi-qubit processors
4 implications

This chapter is a succinct summary of my lecture notes an introduction to
quantum computing. We refer to this source for a more detailed discussion of
all the concepts introduced here.

1.1 High-level overview
A QPU operates on two fundamentally different levels. Input and output
do correspond to conventional bit strings. However, the logic in-between is
executed on extremely small scales – the realm of individual atoms and photons
(particles of light). There, genuine quantum effects become available and can
be used to perform completely new types of (quantum) logic. Fig. 1.1 illustrates
such a setting. Throughout the course of today’s lecture, we will explore the
workings of such a hybrid quantum-classical architecture. We will discover that
the quantum logic part is captured by a nice deterministic and even reversible

Figure 1.1 Schematic illustration of a quantum processing unit (QPU): on a high
level, a QPU maps bitstrings to bitstrings. Also, in this class we read circuit
diagrams from right to left. The red arrow underscores this convention.

https://www.jku.at/fileadmin/gruppen/180/2024_kueng_quantum_computing.pdf
https://www.jku.at/fileadmin/gruppen/180/2024_kueng_quantum_computing.pdf


2 Lecture 1: Quantum information processing units (QPUs)

Figure 1.2 Schematic illustration of a single-qubit processor (QPU): input (very
right) and output (very left) of a single-qubit QPU are conventional bits.
Inbetween, single qubit logic (blue) is used to process the input bit directly at
the quantum level. Disruptive effects happen at the quantum-classical interface
(purple arrows), in particular the readout stage.

formalism. The interfaces between quantum and classical realm are more
disruptive by comparison. Readout, in particular, can produce true randomness
– something that is impossible for conventional (deterministic) hardware. Let us
now start to discover the workings and interplay of these different constituents
in a step-by-step fashion.

1.2 Single-qubit quantum processors
1.2.1 Gaining intuition

The easiest QPU only involves a single input bit, a single output bit and a single
quantum bit, or qubit, inbetween, see Fig. 1.2 for an illustration. There are two
Boolean functions that depend nontrivially on the input in question: identity (I) and bit flip (^ )

gates
I(1) =1 for 1 ∈ {0, 1} (identity)
^ (1) =¬1 for 1 ∈ {0, 1} (negation).

Equivalently, we can capture the action of these operation by the following
2 × 2 truth tables:

I 0 1
0 1 0
1 0 1

^ 0 1
0 0 1
1 1 0

(1.1)



3 Lecture 1: Quantum information processing units (QPUs)

A single-qubit QPU can implement these basic functionalities. A full pipeline
with qubit initialization, classical gate and readout looks as follows:

Note that these two operations are special: in contrast to other elementary
logical gates (like AND and OR) they are reversible. They do not erase any
information about the input bit. This is an essential feature of quantum logical
operations. In fact, identity and bit-flip are their own inverses.

Let us now introduce our first genuine quantum operation that doesn’t
have a classical counterpart. The Hadamard or superposition gate N can
apparently create true randomness: First and foremost, there is the Hadamard
or superposition gate: Hadamard/superposition (N )

, (1.2)

where ‘w.p. 1/2’ is short for ‘with probability 1/2’. This classical-quantum-
classical pipeline takes an arbitrary single-bit input 1 and produces a uniformly
random output bit. We write

=
unif∼ {0, 1}

to denote that = = 0 and = = 1 happen with equal probability 1/2 each. This
feature is a striking deviation from conventional logic which is fundamentally
deterministic. The execution of a Hadamard gate uses an interesting quantum
effect, called superposition: a binary quantum system (qubit) can assume both
bit values at the same time.

If we readout (measure) such a superposition of binary values, the outcome
bit we obtain is truly random: both = = 0 and = = 1 occur with equal
probability. This is the same situation as a fair coin flip. The Hadamard gate
provides the means to observe true randomness by bringing a qubit into equal
superposition. And, equally strikingly, we can use another Hadamard gate to
exit superposition again. Much like identity and bit-flip, the Hadamard gate is



4 Lecture 1: Quantum information processing units (QPUs)

also reversible. In fact, it is its own inverse as well:

. (1.3)

Together, Eq. (1.2) and Eq. (1.3) reveal a striking quantum phenomenon. The
first equation showcases that the Hadamard gate can be used to generate
uniformly random bits. In standard binary logic, randomization requires an
external seed and cannot be undone without erasing the bit in question. Or,
put differently: the only way to map a random bit @ into a deterministic bit =
is to erase and reset. This breaks any correlations with the original input bit 1 .
The Hadamard gate, however, is not like this at all! We can apply it twice to
completely undo its effect and recover a perfect correlation between input bit
1 and output bit =. This is impossible in classical logic (even when we allow for
true randomness).

The ‘truth table’ of the Hadamard gate reflects this, because it doesn’t
adhere to the rules of conventional logic:

0 1
0 1/

√
2 1/

√
2

1 1/
√
2 −1/

√
2

(Hadamard ‘truth table’).

The detailed numbers in this table should become clear later on. For now, we
emphasize two things:

(i) the magnitude of each entry is the same, that is 0 and 1 feature in equal
measure within the superposition;

(ii) the two rows (columns) are distinct. This means that information about
the input qubit is actually preserved.

1.2.2 Mathematical formalism (matrix-vector multiplication)
We now present these rules for completely describing a single-qubit quantum
processor.

Definition 1.1 (single-qubit state vector). state of a qubit is a
normalized 2D vector

The state of a single qubit keeps track of
its quantum logical value. At each point, it is given by a 2-dimensional vector,
normalized to unit length:

|k〉 :=7 =

(
k0
k1

)
∈ ℂ2 s.t. 〈7 ,7 〉 =7 ∗7 = |k0 |2 + |k1 |2 = 1. (1.4)

The somewhat strange notation |k〉 to denote state vectors7 is called a
ket and features prominently in the quantum computing literature.

Example 1.2 (Qubit initialization). The following two state vectors

|0〉 := e0 =

(
1
0

)
and |1〉 := e1 =

(
0
1

)
.



5 Lecture 1: Quantum information processing units (QPUs)

are valid state vectors that tell us how to imprint a classical bit 1 ∈ {0, 1} into
the state vector of a qubit. �

As Definition 1.1 suggests, state vectors can be used to keep track of qubits
throughout a sequence of quantum logical gates. This, however, necessitates a
formalism to unambiguously characterize the action of quantum gates. And a
way to imprint their action onto the current state vector of a qubit.

Definition 1.3 (single-qubit gate action). A single-qubit gate is fully described by
a unitary 2 × 2 matrix single-qubit gates are unitary

2 × 2 matrices (‘truth tables’)
[ =

(
*0,0 *0,1
*1,0 *1,1

)
∈ ℂ2×2 s.t.[ ∗[ =[[ ∗ = I.

The action of gate[ on quantum state |k〉 =7 ∈ ℂ2 is captured by matrix-
vector multiplication gate action on qubit state =

matrix-vector multiplication
:

|kout〉 =7 out =[7 in =[ |kin〉.

The following instructive example showcases how this matrix-vector multi-
plication formalism allows us to recover classical logical operations.

Example 1.4 (matrix representation of classical gates). The matrix representations
of the classical operations identity (I) and bit-flip (^ ) are in one-to-one corre-
spondence with their truth tables:

I =

(
1 0
0 1

)
and ^ =

(
0 1
1 0

)
.

It is easy to check that both matrices are unitary matrices. What is more,

I|0〉 =Ie0 =
(
1 0
0 1

) (
1
0

)
=

(
1
0

)
= e0 = |0〉,

I|1〉 =Ie1 =
(
1 0
0 1

) (
0
1

)
=

(
0
1

)
= e1 = |1〉,

which puts ‘do nothing’ into concrete formulas. Likewise

^ |0〉 =^e0 =
(
0 1
1 0

) (
1
0

)
=

(
0
1

)
= e1 = |1〉,

^ |1〉 =^e1 =
(
0 1
1 0

) (
0
1

)
=

(
1
0

)
= e0 = |0〉,

puts formulas to the action of a bit-flip. It is not a coincidence that these
matrix representations are in one-to-one correspondence to the truth tables of
the corresponding logical functionalities. Matrix-vector multiplication is just
another way of reading logical truth tables. �

Exercise 1.5 (matrix representation of the Hadamard gate). The matrix representa-
tion of the Hadmard gate is given as

N =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
∈ ℂ2×2.



6 Lecture 1: Quantum information processing units (QPUs)

1 Show that this matrix is unitary by verifying[ ∗[ =[[ ∗ = I.
2 The action of a Hadamard gate maps deterministic bit states |0〉 and
|1〉 into uniform superposition states |+〉 and |−〉. Use matrix-vector
multiplication to verify the following state vector representations:

|+〉 =N |0〉 = Ne0 =
1
√
2
(e0 + e1) =

1
√
2
( |0〉 + |1〉) , (1.5)

|−〉 =N |1〉 = Ne1 =
1
√
2
(e0 − e1) =

1
√
2
( |0〉 − |1〉) . (1.6)

Both expressions on the very right should be interpreted as ‘both 0 and
1 in equal measure’. Note, however that one combination has a ‘+’
inbetween, while the other one has a ‘−’. This sign difference ensures
that both superpositions remain distinct and can be undone again.

3 Verify reversibility by showing N 2 = I via matrix-vector multiplication.

Suppose that we sequentially apply # single-qubit gates[ 1, . . . ,[# to an
arbitrary starting state (vector) |k〉 = 7 ∈ ℂ2. Then, we can compute the
final state vector as

|kfinal〉 =7final =[# × · · · ×[ 2 ×[ 17 ∈ ℂ2.

In words: we start our matrix-vector multiplication on the very right and keep
going. The convention to read circuit diagrams from left to right as well exactly
resembles this ordering:

. (1.7)

We now have all the pieces in place to initialize a qubit and keep track of its
state throughout a sequence of arbitrary many single qubit gates. All that is
missing now is a formula for executing the readout at the very end. That is, we
need to assign meaning to the following operation:

.

Definition 1.6 (single-qubit readout). A single-qubit readout (measurement) oper-
ation always produces a valid bit value = ∈ {0, 1}. But it does so probabilistically.

outcome probabilities =
squared magnitudes of state
vector entries

The probability of obtaining outcome = ∈ {0, 1} depends on the underlying
state vector |k〉 =7 ∈ ℂ2:

>0 = Pr |k 〉 [= = 0] = |k0 |2 ≥ 0 and >1 = Pr |k 〉 [= = 1] = |k1 |2 ≥ 0. (1.8)

This should be read as: ‘the probability of obtaining outcome = = 0 (= = 1)
when reading out a qubit in state |k〉 is |k0 |2 (|k1 |2).



7 Lecture 1: Quantum information processing units (QPUs)

Figure 1.3 A visualization of single-qubit state vectors reached by elementary gate
combinations: (a) the Bloch sphere representation of all single-qubit state
vectors (b) The single qubit quantum states reached with only combinations of
^ andN ; (c) The single qubit quantum states reached with only Clifford gates;
(d) The single qubit quantum states reached with arbitrary long combinations
of Clifford gates and theZ gate as stated in Theorem 1.7.

Note that normalization of the state vector (Eq. (1.4) in Defininition 1.1)
ensures that >0 and >1 define a valid binary probability distribution (think:
coin toss): >0, >1 ≥ 0 and

>0 + >1 = |k0 |2 + |k1 |2 = ‖7 ‖2 = 1.

1.2.3 Discrete gate sets and universality
Note that we have phrased the mathematical formalism in an exceedingly
general fashion: a state vector can by any complex-valued 2D vector and a
circuit can be any 2×2 unitary matrix. In stark contrast, the concrete examples
of quantum gates we have seen so far – bit flip (^ ) and the Hadamard gate (N )
– are still very discrete in nature. Here, we analyze this apparent gap between
continuous degrees of freedom and discrete quantum gates.

In fact, combining these two gates only yields 4 functionally distinct gates1:

I,N ,^ ,` = N^N and ^ ` .

In order to get more functionalities, we need additional gates. The phase gate

Y =

(
1 0
0 i

)
1Note that global sign differences cannot affect the functionality of a gate, because

signs/phases are absorbed by the readout rule



8 Lecture 1: Quantum information processing units (QPUs)

is one such gate that introduces complex numbers into the formalism. Together,
N and Y can produce a total of 24 functionally distinct gates known as Clifford
gates. These include all Pauli gates, e.g. ^ = NY2N . A more substantial
increase in expressiveness occurs if we replace the phase gate (Y) with the
T-gate:

Z =

(
1 0
0 exp (ic/4)

)
=

(
1 0
0 (1 + i) /

√
2

)
.

Note that the T-gate can be thought of as the ‘square root’ of the phase gate:
Z 2 = Y . Hence, replacing Y by Z can only increase the number of quantum
gates that can be reached by Hadamard and T. The actual gain is astonishing.

Theorem 1.7 (universal gate set). Hadamard+T generate every
2 × 2 unitary matrix

Together, the elementary Clifford gatesN ,Y
and the T-gateZ form a universal gate set: Every 2 × 2 unitary matrix can
be approximated to an arbitrary degree with sequences comprised of only
N andZ (we actually don’t need Y , because Y = Z 2).

This powerful statement stems from group theory and its implications
are visualized in Figure 1.3. Remarkably, the actual cost of approximating
a target unitary [ up to accuracy n only scales poly-logarithmically in the
desired accuracy. This result, known as Solovay-Kitaev Theorem, ensures
that the approximation error of a quantum circuit approximation diminishes
exponentially with the number of elementary quantum gates one is willing to
invest.

1.2.4 Example: random number generator
Consider the following quantum circuit which we read from left to right:

.

Let us do the computation for 1 = 1 (the case for 1 = 0 is similar). We start by
using matrix-vector multiplication to compute the final state vector (blue):

|k〉 =
(
k0
k1

)
=N |1〉 =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

) (
0
1

)
=

(
1/
√
2

−1/
√
2

)
.

Hence, k0 = 1/
√
2, k1 = −1/

√
2 and perfect randomness generation follows

from invoking the rule for single-qubit readout (Definition 1.6):

Pr |k 〉 [= = 0] = |〈0|k〉|2 = |k0 |2 =
���1/√2���2 = 1/2,

Pr |k 〉 [= = 1] = |〈1|k〉|2 = |k1 |2 =
���−1/√2���2 = 1/2.

This is just the definition of a perfect random bit = unif∼ {0, 1}.



9 Lecture 1: Quantum information processing units (QPUs)

<-qubit architecture: < input
qubits, < readout bits and a
combination of elementary
quantum gates inbetween

Figure 1.4 A general <-qubit architecture has < input bits 10, . . . , 1<−1, a central
block of quantum logic and a final readout stage that recovers< bits=0, . . . , =<−1.
the central block is solely comprised of elementary quantum gates, e.g.N ,Z ,Y
and ITUZ . The number A of elementary quantum gates is called the size of
the quantum circuit.

1.3 Multi-qubit quantum processors
The single-qubit formalism introduced above readily extends to <-qubit QPUs.
Visualized in Fig. 1.4, such an architecture features a <-bit initialization stage
(left), a central block of reversible quantum logic and a <-bit readout stage
(right). Readout and initialization can give rise to one out of � = 2< different
bitstring configurations:

|b〉 = |10 · · ·1<−1〉 with 10, . . . , 1<−1 ∈ {0, 1} .

A general quantum state vector assigns amplitudes to each of these bit configu-
rations: <-qubit state vector has 2<

complex-valued amplitudes

|k〉 =
∑1

10,· · · ,1<−1=0
k10 · · ·1<−1 |10 · · ·1<−1〉 =7 =

©­­­­«
k0· · ·00
k0· · ·01
...

k1· · ·11

ª®®®®¬
∈ ℂ2< .

The normalization condition still requires that the sum of squared absolute
values adds up to one:

‖7 ‖22 =7 ∗7 =
∑1

10,· · · ,1<−1=0

��k10 · · ·1<−1 ��2 = 1.

These squared absolute values of the 2< possible bit string configurations also
tell us the probability of obtaining one of these bitstrings when performing a
readout operation on all < qubits: Born’s rule: <-qubit readout

produces a single <-bit string,
possibly in random fashiono = v = D0 · · ·D<−1 occurs with Pr |k 〉 [o = v ] =

��kD0 · · ·D<−1 ��2 .
This is known as Born’s rule. In words: the probability of observing a certain
outcome bitstring v is given by the squared magnitude of the amplitudekv . The
absolute values ensure nonnegativity, while the state normalization condition
ensures that the sum of all these probabilities is indeed one. So, this is a valid
probability distribution over 2< different outcomes.



10 Lecture 1: Quantum information processing units (QPUs)

Likewise, a general <-qubit circuit is described by a 2< × 2< unitary
matrix [ . Similar to classical circuits, we obtain such functionalities by
combining elementary gates. We already know that Hadamard (N ) and T-gate
(Z ) comprise a universal gate set for single qubit circuits. For multi-qubit
functionalities, we also need at least one conditional two-qubit gate. CNOT is a controlled-not gate

on two qubits
A popular

choice is the CNOT-gate which corresponds to a reversible realization of an XOR
operation:

. (1.9)

Note that the choice of control qubit (solid circle) and target qubit (cross)
matter and we actually obtain two functionally different CNOT gates with the
following 4× matrix (truth table) representations:

ITUZ 0→1 =

©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ , ITUZ 1→0 =

©­­­«
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

ª®®®¬ . (1.10)

Together, Hadamard (N ), T-gate (Z ) and CNOT gates between any qubit
pair can be used to construct more expressive <-qubit circuits. This has been
visualized in the central block of Fig. 1.4. The resulting 2< × 2< matrix[ can
be built up from the matrix descriptions of these elementary gates by using
different types of matrix products:

1 Parallel gate applications use the Kronecker product ‘⊗’ of the individual
gate matrices involved (including I ∈ ℂ2×2 for qubit wires where nothing
happens). For < qubits, this always produces a single 2< × 2< matrix for
each gate layer.

2 Combining sequential gate layers uses the matrix product ‘×’ of 2< × 2<

gate layer matrices.

Note that both Kronecker and matrix produce preserve unitarity. Hence, any
<-qubit circuit comprised of only elementary quantum gates produces a big
2< × 2< circuit matrix[ that is unitary. Hence, every quantum circuit is a valid
<-qubit time evolution. Remarkably, the converse is also true.

Theorem 1.8 (Solovay-Kitaev (<-qubit case)). every 2< × 2< unitary matrix
admits a <-qubit circuit
approx. (Solovay-Kitaev)

Every unitary 2< × 2< matrix[
can be approximated to arbitrary precision by a <-qubit quantum circuit
that is solely comprised of N ,Z ,ITUZ (Clifford) andZ -gates.

In words: every 2< × 2< unitary matrix can be approximated to arbitrary
precision by a <-qubit quantum circuit comprised of only elementary gates.



11 Lecture 1: Quantum information processing units (QPUs)

This is conceptually very interesting, but far from trivial. For instance, given a
unitary matrix[ it is a challenging problem to find such an approximation in the
first place (transpilation). Worse, most 2< × 2< unitaries require exponentially
deep circuits to approximate. This, and related questions, will be the content
of the next lectures.

1.4 Implications
Let us conclude this brief introductory lecture with a couple of general comments
and remarks.

• Every classical circuit can be executed on a QPU with (at most) linear
overhead in the number of qubits and the number of quantum gates. This
is achieved by using additional qubits to implement AND and OR in a
reversible fashion.

• Every quantum circuit can be simulated on a classical computer using
matrix-vector multiplication. This incurs (at most) an exponential over-
head. In turn, quantum computers have no impact on computability, only
computational complexity.

• The best example of this form is Shor’s algorithm for factoring a <-bit
product of two distinct primes # = > × ? . This is actually a hybrid
quantum-classical algorithm that first reduces this factoring problem to
the problem of finding the order of a number in modular arithmetic. A
quantum circuit comprised of$ (<3) can find this order with probability
at least 2/3, while no efficient (randomized) classical algorithm is known.

• The fact that any 2< × 2< unitary matrix[ can be approximated by a
digital quantum circuit is also relevant for simulating quantum physics.
The time-dependent Schroedinger equation of a closed, �-dimensional
system gives rise to a family of�×� unitary matrices[ (B ) = exp (−iBN )
parametrized by the evolution time B . Theorem 1.8 assures that a QPU
comprised of < = dlog2(�)e qubits can, in principle, approximate any
such unitary to arbitrary precision.



2. Complexity of generic states/circuits

Date: 3 April 2025

Agenda:

1 motivation
2 main result
3 proof:
◦ expected behavior
◦ concentration
◦ union bound

2.1 Motivation
Last lecture, we introduced the formalism of QPUs with an emphasiz on <-qubit
QPUs. We found some parallels to classical <-bit circuits, like elementary gate
sets and universality, but there are also some notable differences: quantum
circuits are reversible and can explore continuous degrees of freedom. Also,
the readout stage is very different from classical hardware.

Today we start asking some fundamental questions about the complexity
of quantum circuits and also states. Roughly speaking, the complexity of a
quantum circuit is the minimal cost required to accurately approximate it
with elementary gates. For Boolean circuits, a famous counting argument by
Shannon shows that almost all Boolean functions require circuits of exponential
size to accurately represent. Or, in slightly different words: a generic Boolean
function has exponentially large complexity in the sense that it cannot be
realized by a circuit of sub-exponential size.

Today, we showcase how to generalize this type of results to the quantum
case. To keep things simple, we won’t focus on the complexity of a <-qubit
quantum circuit, but on the complexity of a <-qubit quantum state. Roughly
speaking, the complexity of a quantum state7 = |k〉 is the minimal cost of
a circuit that takes a designated starting state, e.g. 70 = |k0〉 = |0 · · · 0〉
and (approximately) maps it to the <-qubit state vector 7 . Note that the
classical counterpart of this state complexity is not particularly interesting.
The complexity of any <-bit string is at most <. Today, we will prove that the
quantum case is very different. In fact, almost all <-qubit state vectors have a
state complexity that scales exponentially in <.



13 Lecture 2: Complexity of generic states/circuits

2.2 Setting and main result
Recall that every <-qubit quantum state is fully described by a � = 2< -
dimensional state vector 7 = |k〉 ∈ ℂ� with complex-valued entries and
Euclidean unit length: 〈7 ,7 〉 = 7 ∗7 = 1. So, geometrically speaking, a
state vector is an element of an exponentially large complex unit sphere S�−1

with � = 2< . Every state vector is a point on that sphere and, conversely, any
point on that sphere corresponds to a state vector. A natural distance measure
between quantum state vectors is the fidelity: fidelity between two quantum

states
� (7 ,>) = |〈7 ,>〉|2 = |7 ∗> |2 ∈ [0, 1].

The fidelity is 1 if and only if the two state vectors are the same (up to a
complex phase) and 0 if the state vectors are orthogonal to each other. So,
the fidelity is large if and only if two state vectors are (very) similar and the
fidelity is small else if the two state vectors are very distinct from each other.

To define state complexity, we first fix a universal gate set, e.g. N ,Z and
ITUZ between any pair of qubits (and in any direction). Next, we let V'
denote the set of all <-qubit circuits that can be generated with ' such gates or
fewer. In other words: V' is the set of all quantum circuits of size (at most) ' .
Informally speaking, we say that a <-qubit state vector has state complexity at
most ' if there exists a circuit\ ∈ V' that approximately generates it.

Definition 2.1 ( state complexity). formal definition of state
complexity

Let V' be the set of all size-' circuits on <
qubits with gates from a universal gate set (e.g. Hadamard N , T-gate Z and
CNOT gates), let |k0〉 = 70 be a fixed ‘simple’ state. For X ∈ (0, 1), we say
that |k〉 =7 ∈ ℂ� has X -complexity at most ' if

max
\ ∈V'

�
(
7 ,\70

)
≥ 1 − X 2.

If this is the case, we write �X ( |k〉) ≤ ' .
The main result of today addresses the state complexity of a ‘generic’ <-qubit

state vector. the geometry of the � = 2< -dimensional unit sphere provides us
with a uniform measure from which we can sample these state vectors. It’s the
unique unitarily invariant measure on S�−1 that assigns the same infinitesimal
probability weight to every possible unit vector. This measure is sometimes
also called the Haar measure. Today we will prove the following result.

Theorem 2.2 (generic states have exponentially high state complexity). A Haar-
random state h |ℎ〉 unif∼ S�−1 obeys

Pr
h
unif∼ S�−1

[�X ( |ℎ〉) ≤ '] ≤ (2<)2'e−� (1−X
2)/2 for any ' ∈ ℕ+.



14 Lecture 2: Complexity of generic states/circuits

This probability remains tiny until

' ≈ � (1 − X
2)

4 log(2<) =
2< (1 − X )
4 log(2<) = Ω (2</log(<)) .

Note that the Haar measure is fair in the sense that it assigns the same
infinitesimal weight to each � -dimensional quantum state. Laplace’s definition
of probability therefore allows us to interpret Eq. (2.2) as a bound on the relative
volume of complexity-' states. This volume remains tiny until ' approaches
the overall Hilbert space dimension � = 2< . In other words: almost all states
have almost maximal state complexity. almost all states have almost

maximal state complexity

2.3 Proof of the main result
We use a general randomized proof technique to establish Theorem 2.2 that
works in three steps: (i) analyzing the expected behavior, (ii) establish concen-
tration around this expectation and (iii) apply a union bound over all possible
instances. This proof techniques is very versatile and may be of independent
interest.

2.3.1 Step 1: Expected behavior
Let us start by computing the expected fidelity between a Haar-random state
vector and a fixed target state vector.

Lemma 2.3 Let |D〉 = v ∈ ℂ� be a fixed unit vector (state). Then, a random
vector |ℎ〉 = h

unif∼ S�−1 obeys

E
h
unif∼ S�−1

[� ( |D〉, |ℎ〉)] = E
h
unif∼ S�−1

[
|〈v ,h〉|2

]
=

1
�
.

In words: a uniformly random state vector is almost maximally far away of any
fixed unit vector in expectation.

Note that it is possible to compute this expectation value exactly using
Gaussian integration. This strategyworks in two parts: (i) use unitary invariance
of the distribution of h to repace v with a simpler vector, e.g. e0 = (10 · · · )∗;
(ii) replace h by a standard complex Gaussian vector and use the fact that
the length (nonnegative number) and direction (unit vector) of a standard
Gaussian vector are statistically independent to reduce the remaining task to
two independent Gaussian integrals that are easy to solve (one for the real
part and one for the complex part). While Gaussian integration is powerful,
it does require quite a bit of dedication to carry out successfully. Let us now
present an alternative formalism that has become very popular in quantum
information over the past years. Additional details and exposition can be found
in my Caltech lecture notes on Quantum and Classical Information Processing
with Tensors.

https://www.jku.at/fileadmin/gruppen/180/kueng-tensors.pdf
https://www.jku.at/fileadmin/gruppen/180/kueng-tensors.pdf


15 Lecture 2: Complexity of generic states/circuits

Fact 2.4 (Haar integration; folklore). Haar integration formulaLet |ℎ〉 = h
Haar∼ ℂ� (� = 3<) be a Haar

random state vector. Then, for all 9 ∈ ℕ+

E
h
unif∼ S�−1

[
(hh∗)⊗9

]
=

∫
S�−1
(hh∗)⊗9 d`(ℎ) =

(
� + 9 − 1

9

)−1
V∨9 , (2.1)

where %∨9 is the projector onto the totally symmetric subspace of
(
ℂ�

) ⊗9 . �

This formula readily allows us to compute the expected fidelity of a Haar
random state vector.

Proof of Lemma 2.3. The key observation is that the squared modulus becomes
linear in the outer products of the vectors: |〈v ,h〉|2 = |v ∗h |2 = trace (vv ∗hh∗).
This allows us to employ Fact 2.4 for 9 = 1 and V∨1 = I:

Eh
[
|v ,h〉|2

]
=Eh [tr (vv ∗ hh∗)] = trace (vv ∗Eh [hh∗])

=trace
(
vv ∗

1
�
I

)
=

1
�
v ∗Iv =

1
�
.

�

2.3.2 Step 2: Concentration around expected behavior
High-dimensional probability theory tells us that concrete realizations of the
uniform state vector h ∈ S�−1 will concentrate sharply around the expected
behavior we just computed. Concentration of measure, exemplified by Levy’s
Lemma, tells us that

Pr
h
unif∼ S�−1

[��|v ∗h |2 − 1/�
�� ≥ g ] ≤ 2e−�g

2/(9c3) for any g > 0.

In words: the probability that a randomly selected h is not maximally far
away from a fixed reference state vector h diminishes exponentially in � . And
� = 2< already scales exponentially in the number of qubits. This, in turn,
ensures that the probability of a random state vector being close in fidelity
to an arbitrary fixed reference state is doubly-exponentially suppressed in the
number of qubits. Let us prove a weaker variant of such a statement directly
using the Haar integration result from above.

Lemma 2.5 concentration of measure for
one fixed fidelity

Let v ∈ ℂ� (� = 2<) be a fixed unit vector (<-qubit state state).

Then, a random vector h unif∼ S�−1 obeys

Pr
[
|v ∗h |2 ≥ (1 − X )

]
≤ 2e−� (1−X )/2 for any X ∈ (0, 1).

Proof. Let us start by computing the moments of the random variable � (v ,h) =



16 Lecture 2: Complexity of generic states/circuits

|v ∗h |2. For any 9 ∈ ℕ+ the Haar integration formula (Fact 2.4) yields

E |ℎ 〉
[
|v ∗h |29

]
=tr

(
(vv ∗)⊗9 Eh

[
(hh∗)⊗9

] )
=tr

(
(vv ∗)⊗9

(
� + 9 − 1

9

)−1
V∨9

)
=

(
� + 9 − 1

9

)
≤ 9 !
�9

. (2.2)

This moment behavior indicates sub-exponential moment growth. We can
now use some elementary tricks from probability theory to turn these moment
bounds into an exponential concentration bound:

Prh
[
|v ∗h |2 ≥ g

]
=Prh

[
� |v ∗h |2/2 ≥ �g/2

]
=Pr |ℎ 〉

[
exp

(
� |v ∗h |2/2

)
≥ exp (�g/2)

]
≤e−�g/2E

[
exp

(
� |v ∗h |2/2

) ]
=e−�g/2

∑∞
9=0

1
9 !
�9

29
Eh

[
|v ∗h |29

]
≤e−�g/2

∑∞
9=0

1
29

= 2e−�g/2.

The key step is Markov’s inequality (Pr [( ≥ U] ≤ E [(] /U for any nonnegative
random variable () in line three. �

2.3.3 Step 3: union bound
We are now in a position to address quantum state complexity of a randomly
drawn state vector h . Recall that the state complexity in Definition 3.2 is
implicitly defined by a maximization over (a lot of) candidate circuits\ that
map a designated starting state vector70 to v = \70. And we are looking
for the circuit that is closest to h in fidelity. Our concentration result from
above states that a high fidelity is doubly-exponentially unlikely for any fixed
candidate v . Hence, we expect to need a large amount of candidate state
vectors v to counteract this tail suppression. The main result of this lecture
follows from making this intuition precise.

Theorem 2.6 (Detailed restatement of Theorem 2.2). Let �X (h) with accuracy
X ∈ (0, 1) denote the state complexity of a <-qubit state with respect to the
elementary gate set N ,Z and ITUZ . Then, a uniformly random <-qubit
state vector h ∼ S�−1 is guaranteed to obey

Pr
h
unif∼ S�−1

[�X (h) ≤ '] ≤ 2 (2<)2' e−� (1−X
2)/2 for any ' ∈ ℕ.



17 Lecture 2: Complexity of generic states/circuits

This probability remains tiny until

' ≈ � (1 − X )
4 log(2<) =

2< (1 − X )
4 log(2<) .

Proof. Insert the definition of state complexity, see Definition 3.2, and apply a
union bound (Boole’s inequality) to obtain

Pr
h
unif∼ S�−1

[�X (h) ≤ '] = Pr
h
unif∼ S�−1

[
max
\ ∈V'

�� (\70
)∗
h
��2 ≥ 1 − X

]
≤

∑
\ ∈V'

Pr
h
unif∼ S�−1

[��(\70
)∗
h
��2 ≥ 1 − X

]
≤

∑
\ ∈V'

2e−� (1−X )/2 = |V' | 2e−� (1−X )/2.

The last inequality is curtesy of Lemma 2.5 which is valid for any v = \70.
The claim now follows from a simple counting argument. There are at

most (4<2)' different <-qubits that one can construct by sampling ' gates
from the collection I,N ,Z and ITUZ between any pair of qubits. Note that
the inclusion of the identity as an elementary gate ensures that we also count
circuits of strictly smaller size. �



3. quantum state complexity by design

Date: 3 April 2025

Agenda:

1 motivation and results
2 recapitulation
3 proof via (partial deran-

domization)
4 generalizations and

follow-up work

3.1 Motivation and statement of results
The complexity of a circuit (quantum or classical) is defined as the minimal
number of elementary steps needed to evaluate the function. This depends on
the choice of model (‘gate set’), but only in a mild way. It allows us to assert
whether a given computational task is ‘easy’ (small complexity) or ‘hard’ (high
complexity).

In quantum information and computation, the notion of complexity extends
meaningfully to quantum states as well. State complexity measures the
effort/time required to produce |k〉 =7 from a simple starting state |k0〉 =70,
e.g. the all-zero initialization |0 · · · 0〉.

Here are two basic facts about the analysis of complexity:

• upper bounds are ‘easy’, because every circuit decomposition yields one
for free. Certain circuit families also come with universal upper bounds,
e.g. 2$ (<) for <-qubit quantum circuits and $ (<2/log(<)) for <-qubit
Clifford circuits (i.e. circuits generated by Hadamard (N ), CNOT and
phase (Y)).

• lower bounds are ‘hard’, because it requires us to rule out potential short-
cuts. In classical Boolean logic, complexity captures the notion of optimal
compilation. This problem sits in the second level of the polynomial
hierarchy. Quantum circuit compilation is even harder.

Circuit complexity has long been a prominent foundational concept in
(classical and quantum) computer science. Over the past years, state complexity
has been identified as a useful concept in quantum physics. Here are a couple



19 Lecture 3: quantum state complexity by design

exp(Ω(n))

co
m

p
le

x
it

y

circuit size (time)

Figure 3.1 Expected complexity growth in random circuits. Conjecture 3.1 states
that, for random quantum circuits acting on < qu3 its, the circuit complexity
grows linearly with circuit size (time) until it saturates at a value exponentially
large in <.

of examples:

a1 topological phases of matter (at zero temperature) can be classified using
the complexity of the ground state wave function;

a2 chaotic Hamiltonians produce long-time quantum evolutions that generate
highly complex states;

a3 the AdS/CFT-correspondence posits that the complexity of a quantum state
of the boundary theory corresponds to the volume in the bulk geometry,
which is hidden behind the event horizon of a black hole.

It is extremely difficult to study complexity growth for concrete Hamiltonian
evolutions. An alternative approach is to consider ensembles of circuits, and
to derive lower bounds on complexity, which hold with high probability when
samples are selected from these ensembles. This together with the AdS/CFT
conjecture gave rise to the following conjecture:

Conjecture 3.1 (Brown, Susskind [brown2018]). the complexity of random
circuits is conjectured to grow
linearly with size

Most local (random) circuits of
size ) have a complexity that scales linearly in ) for an exponentially long
time.

This conjecture is visualized in Figure 3.1 Today, we will prove a related
statement regarding the growth of state complexity under local random circuits
on < qubits (� = 2<). To achieve such a goal, we will work with the following
standard notion of state complexity which we already saw last time.

Definition 3.2 ( state complexity). formal definition of state
complexity

Let V' be the set of all size-' circuits on <
qubits with gates from a universal gate set (e.g. Hadamard N , T-gate Z and
CNOT gates), let |k0〉 = 70 be a fixed ‘simple’ state. For X ∈ (0, 1), we say
that |k〉 =7 ∈ ℂ� has X -complexity at most ' if

max
\ ∈V'

�
(
7 ,\70

)
≥ 1 − X 2.



20 Lecture 3: quantum state complexity by design

If this is the case, we write �X ( |k〉) ≤ ' .
Based on this formal definition, we will prove the following rigorous lower

bound on typical state complexity generated by local random quantum circuits.
Such circuits arise step by step. At each step, two qubits are selected uniformly
at random and a randomly selected elementary gate is applied to them.

Theorem 3.3 (’polynomial’ growth in state complexity, informal). ‘polynomial’ state complexity
growth

‘Most’ local
random circuits of size) produce states with complexity (at least)Ω

(
) 1/(5+= (1) ) .

This growth persists up to exponential circuit sizes ) ≈
√
� = 2</2.

Similar statements are true for stronger notions of state and circuit com-
plexity as well. We will briefly discuss some of them in Section 3.5. Remarkably,
a recent result by Chi-Fang Chen, Jeongwan Haah, Jonas Haferkamp, Yunchao
Liu, Tony Metger and Xinyu Tan improves this scaling from Ω

(
) 1/(5+= (1) ) to

Ω() ) for both the complexity of a quantum state and the complexity of a
quantum circuit.

Theorem 3.4 (‘linear’ growth in circuit complexity, informal). ‘Most’ local ran-
dom quantum circuits of size ) cannot be accurately approximated by
circuits of size sublinear in) . This growth persists up to exponential circuit
sizes.

This proves the conjecture by Brown and Susskind mentioned earlier on.

3.2 Recapitulation: almost all states have high complexity
Let us start by recapitulating the complexity of generic (i.e. Haar-random)
<-qubit states. These are states sampled uniformly from the complex unit
sphere in � = 2< dimensions. There, concentration of measure together with a
simple counting argument yield exponentially strong lower bounds on the state
complexity.

Lemma 3.5 (Restatement of Lemma 2.5). exponential concentration for
Haar-random states

Fix |D〉 ∈ ℂ� (� = 2<) and let |ℎ〉 =
h

Haar∼ ℂ� be a Haar random state. Then,

;0Bℎ@;%@
[
|v ∗h |2 ≥ (1 − X )

]
≤ 2e−� (1−X )/2 for any X ∈ (0, 1).

This is a poor man’s variant of a beautiful measure concentration phe-
nomenon called Levy’s lemma. It applies much more generally and is best
proved via isoperometric inequalities. The argument presented here, however,
does provide valuable guidance on how to deal with ensembles that are not
quite Haar random.

Fact 3.6 (Haar integration; restatement of Fact 2.4). Let |ℎ〉 Haar∼ ℂ� (� = 2<) be
a Haar random state. Then, for all 9 ∈ ℕ+

E |ℎ 〉
[
( |ℎ〉〈ℎ |)⊗9

]
=

∫
Haar
( |ℎ〉〈ℎ |)⊗9 d`(ℎ) =

(
� + 9 − 1

9

)−1
%∨9 , (3.1)



21 Lecture 3: quantum state complexity by design

where %∨9 is the projector onto the totally symmetric subspace of
(
ℂ�

) ⊗9 . �

Proof of Lemma 3.5. Let us start by computing the moments of the random
variable |〈D,ℎ〉|2. For any 9 ∈ ℕ+ the Haar integration formula (Fact 2.4) yields

E |ℎ 〉
[
|〈D,ℎ〉|29

]
=tr

(
( |D〉〈D |)⊗9 E |ℎ 〉

[
(|ℎ〉〈ℎ |)⊗9

] )
=tr

(
( |D〉〈D |)⊗9

(
� + 9 − 1

9

)−1
%∨9

)
(3.2)

=

(
� + 9 − 1

9

)
≤ 9 !
�9

. (3.3)

This moment behavior indicates sub-exponential moment growth. We can
now use some elementary tricks from probability theory to turn these moment
bounds into an exponential concentration bound:

Pr |ℎ 〉
[
|〈D,ℎ〉|2 ≥ g

]
=Pr |ℎ 〉

[
� |〈D,ℎ〉|2/2 ≥ �g/2

]
=Pr |ℎ 〉

[
exp

(
� |〈D,ℎ〉|2/2

)
≥ exp (�g/2)

]
≤e−�g/2E

[
exp

(
� |〈D,ℎ〉|2/2

) ]
=e−�g/2

∑∞
9=0

1
9 !
�9

29
E |ℎ 〉

[
|〈D,ℎ〉|29

]
≤e−�g/2

∑∞
9=0

1
29

= 2e−�g/2.

The key step is Markov’s inequality (Pr [( ≥ U] ≤ E [(] /U for any nonnegative
random variable () in line three. �

As we saw last time, exponential concentration for Haar-random states
implies a very strong claim about the complexity of generic states.

Note that the Haar measure is fair in the sense that it assigns the same
infinitesimal weight to each � -dimensional quantum state. Laplace’s definition
of probability therefore allows us to interpret Eq. (2.2) as a bound on the relative
volume of complexity-' states. This volume remains tiny until ' approaches
the overall Hilbert space dimension � = 2< . In other words: almost all states
have almost maximal state complexity.

3.3 Proof part 2: complexity by design
Our study of the complexity of Haar random states is a promising starting point.
But it doesn’t allow us to address less generic state ensembles. One solution is
to apply a partial derandomization based on the Haar integration formula (3.1).
The main result of last lecture (Haar-random states have exponentially high
complexity) is contingent on the assumption that this formula is true for all
tensor powers 9 ∈ ℕ+ This allowed us to control all 9 moments of |〈v ,h〉|2
and arrive at an exponentially strong concentration formula (Lemma 3.5). We



22 Lecture 3: quantum state complexity by design

can relax these assumptions by assuming that the Haar integration formula
is only approximately true for the first  tensor powers. Ensembles with this
property are called n-approximate  -designs.

Definition 3.7 (approximate  -design). (approximate)  -designFix n ∈ (0, 1) and a threshold  ∈ ℕ+.
We say that an ensemble {>7 ,h 7 } ⊂ S�−1 of complex-valued unit vectors forms
an n-approximate  -design if




Eh

[
(hh∗)⊗9

]
−

(
� + 9 − 1

9

)−1
V∨9







1

≤ n for all 9 = 1, . . . ,  .

Note that for  = 1, this requirement is met by any discrete vector
distribution that is isotropic:

Eh [hh∗] =
∑

7
>7h 7h

∗
7 =

1
�
I.

One concrete example is sampling uniformly from an orthonormal basis of ℂ� .
Haar random vectors drawn uniformly from the sphere are another extreme
case that occurs when we let  tend to infinity. Adjusting the design order  
allows us to interpolate between those extremes. And, remarkably, the typical
state complexity associated with such ensembles varies accordingly.

Proposition 3.8 (complexity by -design). most  -design states have
complexity linear in  

Suppose that h ∈ ℂ� is sampled from
an n-approximate  -design. Then,

Prh [�X (h)] ≤ (2<)2'
(

 

(1 − X 2)�

) 
for all ' ∈ ℕ+.

Disregarding constants and (1 − X 2), this probability remains tiny until

' ≈  (< − log( ))
log(<) .

Warning 3.9 Eq. (3.8) becomes vacuous once the design order  approaches
the total system size � = 2< . This puts an upper limit on the amount of
progress we can make by letting  become larger and larger. �

Proof of Proposition 3.8. We will do the proof for the extreme case n = 0. An
extension to n > 0 is relatively straightforward. The key ingredient is to replace
the Haar concentration formula with a weaker concentration bound that only
uses the first  moments. Fix |D〉 = v ∈ ℂ� arbitrary and g ≥ 0. Markov’s
inequality then implies polynomial concentration for

 -designs
Prh

[
|〈v ,h〉|2 ≥ g

]
=Prh

[
|〈v ,h〉|2 ≥ g 

]
≤g− E

[
|〈v ,h〉|2 

]
=g−9

(
� +  − 1

 

)−1
≤

(
 

�g

) 
.



23 Lecture 3: quantum state complexity by design

Here, we have made use of the assumption that the  -design approximation is
perfect (n = 0). This allows us to directly recycle the exact Haar integration
from Eq. (3.3). The claim then readily follows from retracing the steps of the
previous proof, but with this weaker polynomial concentration formula. �

3.4 Proof part 3: connection to local random circuits
Proposition 3.8 highlights that the complexity of a randomly selected  -design
state increases linearly with  until a certain threshold is met ( ≈ � = 2<).
But, so far,  -designs have ben a rather abstract concept. The following deep
result allows us to relate  -designs to random circuits of increasing size.

Fact 3.10 (local randomcircuits generate9-designs [Chen, Haah, Haferkamp, Liu,Met-
ger, Tan ). ] local random circuits form

 -designs
Local random circuits of size ) =$

(
< (< + log(1/n)) log4( )

)
produce state ensembles* |k0〉 that form approximate  -designs with multi-
plicative error n. �

This is a very recent and substantial improvement of a seminal result
by Brandão, Horodecki and Haarow from 2016. Our main result is now
an immediate consequence of Proposition 3.8 and Fact 3.10. The detailed
conversion is a bit cumbersome, but here is the main gist.

Theorem3.11 (linear growth in state complexity, informal). linear state complexity
growth (formal)

Fix70 = |k0〉 ∈ ℂ�

and let[ be a local random circuit of size ) . Then, with high probability

�X
(
[70

)
= Ω

(
)

<4

)
,

where we have suppressed the dependence on X . This growth persists up to
exponential circuit sizes ) = O(

√
�) = O

(
2</2

)
.

It is also possible to turn this probabilistic statement into a quantitative
bound on the minimal number of high-complexity states that have this property.
It must grow exponentially in circuit depth as exp (Ω() )). The trick is to
exploit the fact that the weight distribution of a  -design cannot be too spiky.
This then implies a direct relation between the probability of producing a high
complexity state and the minimal number of high-complexity states within the
entire ensemble.

3.5 Generalizations
The proof technique introduced above is very versatile and can be adjusted to
cover stronger notions of complexity as well. Circuit complexity is one such
example. We say that a unitary[ ∈ U(�) has X -complexity at most ' if formal definition of circuit

complexity
min
\ ∈V'



[ ·[ † −\ ·\ †

� ≤ X . (3.4)



24 Lecture 3: quantum state complexity by design

Here, ‖ · ‖� denotes the diamond distance of the two unitary channels involved.
If Eq. (3.4) holds, we write �X ([ ) ≤ ' . It should be not surprising at this
point that circuit complexity also grows with circuit size.

Theorem 3.12 (‘polynomial’ growth in state complexity, informal). ‘polynomial’ circuit
complexity growth

‘Most’ local
random circuits of size ) produce unitaries with complexity (at least)
Ω

(
) /<4) . This growth persists up to circuit sizes ) = O

(√
�

)
= O

(
2</2

)
.

To prove this claim, it is helpful to first relate the diamond distance to
another property that is easier to control:

‖[ ·[ † −\ ·\ †‖� ≤ X ⇒
���trace (

\ †[
)���2 ≥ �2(1 − X 2).

This necessary condition is much easier to control. In particular, we can use
more general Haar integration techniques to bound moments and deduce
polynomial concentration bounds. The rest of the proof is then almost identical
to the state complexity case.

stronger/operational
definitions of complexity

Next, wewant to point out that it is possible to introduce stronger/operational
complexity notions for both states and unitary circuits. These are based on
the operational task of distinguishing the state/unitary in question from the
most useless state/channel conceivable. For states this is the maximally mixed
state 3 = I/� , while for channels this is the completely depolarizing channel
D(1) = trace(1)3 . In both cases, the optimal single-shot distinguishability
protocols are known. They give rise to the trace distance ‖77 ∗ −3 ‖1 and the
diamond distance ‖[ ·[ † − D‖�, respectively. But achieving these optimal
values requires measurement procedures whose complexity mimics that of the
state/unitary in question. This allows us to indirectly capture complexity by
limiting the circuit size allowed for executing distinguishing measurements.
A formal definition would go beyond the scope of this talk. Instead, we refer
to Figure 3.2 (state complexity) and Figure 3.3 (circuit complexity) for visual
illustrations. These stronger/operational notions of complexity imply the ones
used so far, but the converse is not necessarily true, as the following example
shows.

Example 3.13 Let |ℎ〉 be a Haar-random state on (< − 1) qubits and define the
<-qubit state7 = h ⊗ e0 = |ℎ〉 ⊗ |0〉. Then, this state has exponential state
complexity according to Definition 3.2. But it is actually very easy to distinguish
this state vector from the maximally mixed state 3 = I/� . A computational
basis measurement on the last qubit (and ignoring everything else) does the
job with reasonable probability – especially if we replace qubits (3 = 2) with
higher-dimensional qu3 its. �

This feature of strong/operational complexity delays the onset of complexity
growth up to circuit sizes that cover all qu3 its involved. Such a behavior
accurately addresses physical effects like operator growth and the switchback
effect in holography.



25 Lecture 3: quantum state complexity by design

r

Figure 3.2 Pictographic illustration of strong state complexity. A black-box either
outputs a (known) pure state d = |k〉〈k |, or the maximally mixed state
d0 =

1
3
I. The task is to correctly guess which one it produced by applying a pre-

processing circuit+ (blue line pattern) of limited size @ and performing a simple
measurement (right). We say that |k〉 has strong/operational state complexity
at most @ if the probability of correctly distinguishing both possibilities is close
to optimal.

r′ r′′

|φ0〉

|φ0〉

Figure 3.3 Pictographic illustration of strong circuit complexity. A black box
(center) takes quantum states as inputs and applies either a unitary channel
U(d) = *d* †, or the depolarizing channel D(d) = g = I/� . The task is to
correctly guess which evolution occurred. The rules of the game allow short pre-
and post-processing circuits (blue line patterns) that may involve a quantum
memory. The final guess must be based on a simple measurement (right). We
say that* has strong/operational circuit complexity at most @ = @ ′ + @ ′′ if the
probability of correctly distinguishing both options is close to optimal.


	1 Quantum information processing units (QPUs)
	1.1 High-level overview
	1.2 Single-qubit quantum processors
	1.2.1 Gaining intuition
	1.2.2 Mathematical formalism (matrix-vector multiplication)
	1.2.3 Discrete gate sets and universality
	1.2.4 Example: random number generator

	1.3 Multi-qubit quantum processors
	1.4 Implications

	2 Complexity of generic states/circuits
	2.1 Motivation
	2.2 Setting and main result
	2.3 Proof of the main result
	2.3.1 Step 1: Expected behavior
	2.3.2 Step 2: Concentration around expected behavior
	2.3.3 Step 3: union bound


	3 quantum state complexity by design
	3.1 Motivation and statement of results
	3.2 Recapitulation: almost all states have high complexity
	3.3 Proof part 2: complexity by design
	3.4 Proof part 3: connection to local random circuits
	3.5 Generalizations


